etat des lieux pollution

La dépollution des sols consiste principalement à rendre le sol et le sous-sol d’une zone apte à un nouvel usage industriel ou un usage résidentiel, voire dans les cas extrêmes apte à un retour à la nature ou à un usage agricole, après qu’il eut été pollué par une activité ou un accident industriel.

En effet, la présence de polluants dans le sol pose des problèmes de toxicité dès lors que ces polluants migrent (sous l’effet de l’écoulement des eaux, de la manipulation de la terre, de plantations) et se retrouvent dans la chaîne alimentaire ou entrent en contact avec l’homme via son alimentation. Par ailleurs, même si le danger pour l’environnement lié à la pollution d’un site n’apparaît pas comme immédiat, on peut vouloir le dépolluer pour le valoriser (en zone constructible par exemple) en réduisant le risque qu’il fait courir aux futurs utilisateurs.
Il existe différentes méthodes permettant d’extraire les polluants présents dans le sol et parfois de les y détruire (quand il s’agit de polluants dégradables). Elles dépendent du type de polluant (hydrocarbures, métaux lourds, produits chimiques divers, etc.) et de la nature du terrain (perméable ou non, granuleux, présence d’eau, pH, etc.).
D’autre part, la décontamination des sols ne peut pas être envisagée sans se poser la question de l’éventuelle épuration des eaux qui y sont stockées ou qui y circulent, que ce soit en surface ou en sous-sol (nappes phréatiques).
Méthodes de dépollution
Elles peuvent se classer en trois catégories : hors-site, sur-site et in-situ. Les deux premières nécessitent en général l’excavation de la terre à traiter, la dernière se fait sur place en installant sur le site le procédé de dépollution.
Un dernier type d’action existe : le confinement, mais ne constitue pas à proprement parler une action de dépollution. On se contente d’empêcher les polluants de migrer en interposant des barrières étanches (géomembranes, murs de béton, couche d’argile, etc.) entre le milieu pollué et le milieu sain. Cette méthode est utilisée lorsque les autres sont inopérantes, et dans l’attente de trouver une technologie adaptée pour mener à bien un véritable traitement du site.
Analyse de la pollution
Avant la dépollution proprement dite, on étudie généralement la nature et l’origine de la pollution, de manière à mieux cerner les produits mis en cause et le volume de terre à traiter :
·    Historique du site et des activités qu’il a supportées
·    Carottage et étude physico-chimique des polluants rencontrés
·    Évaluation en laboratoire de différentes méthodes et processus de dépollution
·    Bilan et plan de dépollution en fonction, de l’occupation future du site
Dépollution par remplacement
Historiquement, il s’agit de la première méthode employée : on décape le sol contaminé sur toute l’épaisseur polluée. On remplace la terre enlevée par de la terre saine prélevée ailleurs. Outre les coûts de transport que cela induit, les coûts liés au retraitement ou au stockage de la terre contaminée sont proportionnels au volume déplacé, qui dépend directement de la surface et de la profondeur de la zone polluée. À noter que la terre souillée est considérée comme un déchet industriel à partir du moment où elle est déplacée.
Dépollution physico-chimique
L’injection dans le terrain d’un liquide ou d’un gaz sous pression susceptible de dissoudre le ou les polluants peut être utilisée lorsque ces derniers sont connus. On peut alors retraiter sur place, de manière progressive, les terres souillées. Ceci suppose une installation industrielle temporaire de retraitement pour :
·    l’extraction de la terre à traiter (optionnel selon les méthodes)
·    le processus de percolation ou d’injection de gaz
·    la récupération des lixiviats et leur retraitement
·    la remise en place de la terre traitée (si elle a été excavée).
Extraction par aspiration
Adaptée aux terrains sableux et peu chère, pour les polluants volatils et semi-volatils (hydrocarbures notamment) : le terrain est mis en dépression par une pompe à vide, les vapeurs sont traitées par oxydation catalytique, condensation par réfrigération ou adsorption par du charbon actif de traitement est mobile pour parcourir le site.
Extraction par injection
Lors de l’application de la méthode dite de venting, on injecte sous pression de l’air, de l’azote ou de la vapeur. Ce traitement est adapté aux terrains perméables à l’air, pour des solvants volatils, comme par exemple les solvants chlorés : des puits permettent l’injection et la récupération des vapeurs, retraitées comme lors de l’aspiration. Le sol peut en outre être chauffé (par micro-ondes) pour améliorer l’efficacité de la technique.
Traitement par flottation (en anglais Froth Flotation)
Il s’agit d’une technique physico-chimique qui s’intègre dans un système de lavage de sol. Après extraction, la terre est tamisée ; on lui ajoute de l’eau et des agents tensioactifs. Les bulles d’air injectées dans le mélange « transportent » les phases contenant les polluants par affinité hydrophobe. Cette méthode couvre la plupart des polluants à divers degrés. Le procédé peut s’opérer dans des cellules de flottation ou dans des colonnes de flottation.
Extraction électrique
Adaptée principalement aux polluants ionisés : métaux lourds, certains ions organiques. La nature du terrain est peu importante pourvu que sa conductivité soit bonne (grâce à la présence d’eau par exemple). Des électrodes poreuses sont implantées de manière à générer un courant électrique dans le sol qui fait migrer les ions vers les électrodes de charge opposées. La récupération des polluants se fait par pompage par exemple.
Extraction par chauffage
Adaptée aux polluants facilement convertibles en dioxyde de carbone et en eau, comme les hydrocarbures. La terre est excavée, broyée et passée dans un four entre 600 et 800 °C après retrait des plus gros objets. Les vapeurs de cuisson doivent ensuite être retraitées, car elles peuvent contenir des composés soufrés ou nitreux toxiques.
Une variante consiste à injecter directement de l’oxygène dans le sol, tout en le chauffant à près de 1000°C. Elle revient plus cher d’un point de vue énergétique.
Lavage du sol
Différentes variantes existent : le lavage peut être fait à haute pression, à pression normale, sur site ou hors site.
L’objectif est de séparer les particules les plus fines dans lesquelles sont principalement concentrés les polluants (lavage haute pression à l’eau), ou de capturer ces polluants dans une solution liquide (eau, acide). Dans le premier cas, la terre doit être excavée, les déchets récupérés seront stockés sous forme de galettes ; dans le deuxième cas, le traitement peut s’effectuer sans extraction si le terrain est perméable. Par exemple, la plupart des métaux lourds (cuivre, zinc, arsenic, cadmium, plomb) peuvent être extraits en utilisant une solution d’acide qu’il faut ensuite neutraliser (pour précipiter une partie des composés) puis décanter, filtrer et centrifuger, afin de séparer les éléments restants.
Le lavage in-situ à haute pression reste cependant limité dans son application à des zones de faible taille, la pression de l’eau diminuant rapidement avec la distance à la buse d’injection.
Des techniques utilisant d’autres solvants existent (alcanes, alcools ou cétones pour dissoudre la plupart des polluants organiques et toxiques). Elles sont peu chères et se basent sur l’injection du solvant, suivi de son extraction par une des techniques décrites plus haut.
Dépollution biologique
Ces modes de dépollution, basés sur la capacité de certains êtres vivants à filtrer et accumuler les éléments toxiques dans leur organisme ou à s’en servir comme aliment, n’existent que depuis les années 1990. Ils semblent pouvoir résoudre une partie des problèmes de coût soulevés par les modes classiques.
Cependant, d’autres problèmes se posent, notamment en ce qui concerne le risque de prolifération des organismes utilisés, bien que les conditions à réunir sur site soient très précises pour qu’ils croissent normalement. Une autre limite est la profondeur que ces organismes peuvent atteindre, que ce soit par leur croissance naturelle, ou par la manière dont ils sont mis en œuvre par l’homme sur le site à traiter. Leur relative lenteur d’action (de quelques mois à quelques années) constitue également une contrainte, souvent peu compatible avec les enjeux économiques de la revalorisation du site.
Enfin, alors que les tests en laboratoire sont généralement concluants, la mise en œuvre sur le terrain peut s’avérer décevante, par exemple si les concentrations en polluants sont trop importantes localement, ou si la nature même du terrain comporte des aléas compromettant la croissance de ces organismes.
En pratique, ces techniques ne sont donc souvent mises en œuvre qu’en complément des précédentes.
Utilisation de bactéries
Certaines bactéries ont le pouvoir de dégrader des molécules complexes et d’en tirer ainsi l’énergie dont elles ont besoin pour vivre.
On les a utilisé pendant des années pour traiter des sols pollués par des solvants chlorés. Mais on s’est aperçu que cette technique de traitement micro-biologique par dégradation biologique de certains polluants in-situ (éventuellement encouragée par la maîtrise de paramètres comme l’oxygénation, le degré d’hygrométrie, la température) peut générer des produits de dégradation (métabolites) plus toxiques et/ou plus mobiles que les produits initiaux. Ces métabolites ne sont pas les mêmes selon que les conditions de l’activité microbienne sont aérobies ou anaérobies. Afin de contrôler la production des métabolites les plus dangereuses, on peut passer de l’un à l’autre des modes de biodégradation lorsque c’est opportun.
Actuellement des recherches portent sur la sélection d’espèces adaptées à la dégradation de chaque type de polluant. Ces recherches sont menées conjointement par des laboratoires de recherche et par des éco-industriels. Elles commencent à porter leurs fruits pour certains types d’hydrocarbures aromatiques polycycliques (comportant plus de trois noyaux benzéniques), avec l’utilisation de certaines souches de champignons ayant la particularité d’attaquer les polluants par des enzymes extracellulaires.
On cherche également à identifier des souches bactériennes capables de dégrader des composés de type pyrène, à partir d’espèces présentes dans des milieux hyper-salés, par analyse de leurs séquences génétiques.
Exemples de correspondances entre polluants et bactéries dépolluantes (Source : Biodépol’99) :
·    Nitrates : Comamonas, Hyphomicrobium
·    Phosphates : Acinetobacter, Moraxella
·    Pesticides : Enterobacter
·    Dioxines : Brevibacterium
·    Cyanures : Thiobacillus, Rhizoctonia
·    Composés soufrés : Thiobacillus
·    caoutchoucs : Sulfolobus, Rhodococcus, Thiobacillus
·    Huiles, graisses : Pseudomonas, Xanthomonas, Bacillus
·    Hydrocarbures : Acinetobacter, Flavobacterium, Bacillus, Pseudomonas, Achromobacter, Arthrobacter
·    Métaux lourds : Saccharomyces, Rhizopus, Chlorella, Thiobacillus, Zoogloea
Utilisation de plantes
Articles détaillés : phytoremédiation et hyperaccumulateurs.
De nombreuses plantes sont capables de fixer dans leurs cellules les métaux lourds, radionucléides, composés organiques polluants et autres produits indésirables; certaines plantes produisent des enzymes qui dégradent ces polluants en des produits moins toxiques ou non-toxiques. Elles peuvent également être accompagnées d’une mycorrhizosphère se chargeant du travail de fixation et / ou de transformation, dont l’étude visant aux applications à l’échelle industrielle est en plein essor. Ces propriétés en ont fait des candidates d’avenir à la dépollution des sols. Les plantes sont aussi sélectionnées selon leur taille et aptitude à faire plonger leurs racines profondément dans le sol, de manière à atteindre les couches polluées profondes (quelques mètres), et selon le type de polluant qu’elles sont capable d’emprisonner ainsi.
En pratique on peut aussi excaver la terre et l’épandre sur une membrane imperméable sous serre, de manière à isoler la matière polluante et contrôler précisément les paramètres influant sur la croissance des plantes sélectionnées. Cela retire toutefois un des bénéfices majeurs de la phytoremédiation, à savoir son coût d’opération peu élevé.
L’un des avantages de la phytoremédiation est la possible revalorisation des polluants recyclables, aussi appelé phytominage. Ainsi, les plantes dites hyperaccumulatrices, qui stockent le polluant dans leurs tiges et leurs feuilles peuvent être récoltées puis incinérées en vue de récupérer les métaux parmi les cendres et les réutiliser en métallurgie.

Résultats de la dépollution
Aucune des méthodes présentées ci-dessus ne permet de dépolluer complètement les sols contaminés par des années de rejets industriels non maîtrisés. En pratique, et pour obtenir de meilleurs résultats, on combine généralement plusieurs méthodes de façon à optimiser l’élimination des polluants. Les résultats atteignent ainsi un niveau acceptable au vu des normes de concentration maximale admises pour les polluants les plus toxiques et en fonction du nouvel usage envisagé pour le site.
Les terrains, une fois traités, peuvent alors être rendus à un usage non industriel, qui sera fonction du degré de dépollution atteint. Il n’est plus recherché un retour à l’état du sol antérieur à la pollution (dépollution totale) en raison du coût excessif de l’opération. L’objectif est donc fixé en fonction du nouvel usage envisagé sur le site.. <hrdata-mce-alt= »Dispositions réglementaires quant à la dépollution des sols » class= »system-pagebreak » title= »Dispositions réglementaires quant à la dépollution des sols » />

 

Dispositions réglementaires quant à la dépollution des sols

Au niveau Européen
·    L’Europe prépare en 2007 (depuis 2002) une directive-cadre sur les sols.
·    Un Arrêt de la CJCE Van de Walle devrait faire jurisprudence. Directive du 21 avril 2004 relative à la responsabilité civile environnementale

En France
Seules les installations classées pour la protection de l’environnement sont soumises à réglementation concernant les sites et sols pollués.
·    Le décret n° 77.1133 du 21 septembre 1977 modifié pris pour l’application de la loi n° 76.663 du 19 juillet 1976 relative aux installations classées pour la protection de l’environnement (codifiée au titre 1er du livre V du code de l’environnement).
Dans la circulaire du 8 février 2007 relative aux installations classées et à la prévention des risques de la pollution des sols – gestion des sols pollués faisant référence aux modalités de gestion et de réaménagement des sites pollués Nelly Olin, alors ministre de l’environnement, liste les textes maintenus et abrogés.
Sont maintenues :
·    La circulaire DPPR/SEI/BPSE/DE n° 99-408 du 9 juin 1999 relative aux inventaires historiques des sites industriels anciens
·    La circulaire du 1er mars 2005 relative à l’inspection des installations classées – sites et sols pollués. Conséquences de l’arrêt de la Cour de Justice des Communautés Européennes dit « Van de Walle »
·    La circulaire n° BPSPR/2005-305/TJ du 18 octobre 2005 relative à la mise en œuvre des nouvelles dispositions introduites dans le décret n° 77-1133 du 21 septembre 1977 concernant la cessation d’activité des installations classées – choix des usages
·    La circulaire n° BPSPR/2005-400/DG du 14 décembre 2005 relative aux Installations Classées – stations service autoroutières – approche méthodologique harmonisée
Sont maintenues dans la mesure où elles ne sont pas contradictoires:
·    La circulaire du 5 octobre 2005 relatives à l’inspection classées – surveillance des eaux souterraines.
·    La circulaire du 17 janvier 2005 relatives à l’inspection classées – surveillance des eaux souterraines.
·    La circulaire n° DPPR/SEI 03-327 du 30 juillet 2003 relative au tableau de bord de l’action des pouvoirs publics en matière de sites et sols pollués. Résultats de la surveillance des eaux souterraines.
La nouvelle stratégie nationale Sites et sols pollués (8 février 2007) : Après 13 ans d’application d’une politique site et sols polluées ayant associé fortement les DRIREs, le BRGM et l’Ademe, l’état via le Ministère de l’Écologie, du Développement et de l’Aménagement durables donne des responsabilités et obligations nouvelles aux collectivités locales (communes et EPCI), notamment si elles sont vendeur/acquéreur ou aménageur de terrains pollués ou potentiellement pollués. L’ESR (évaluation simplifiée des risques) est supprimée, les Valeurs de constat d’Impact (VCI) et Valeurs de définition de source sol (VDSS) sont supprimées et il y a redistribution des diagnostics initiaux et approfondis (DI/DA).
Selon les estimations officielles, la France compte plus de 250000 sites potentiellement pollués.

Au niveau international
·    évaluation des risques issus des sites pollués : règlementations et pratiques de 16 pays européens, BRGM, ed. avril 2005, données 2004
·    Aux États-Unis (US-EPA);

Économie de la dépollution
Les contraintes de réutilisation de sites pollués deviennent un des moteurs du besoin de dépollution ; d’autre part, les contraintes réglementaires rendent obligatoire la dépollution en fin d’occupation de site. Ces facteurs ont conduit à la création d’un véritable marché de la dépollution, avec la création de sociétés spécialisées dans cette activité, que ce soit pour la détection et l’analyse des pollutions des sols ou pour la dépollution elle-même. Certaines entreprises dont les activités sont par nature polluantes se sont adaptées et ont monté des filiales ad hoc.

Voir aussi notre page Diagnostic de pollution des sols

No votes yet.
Please wait...